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The taxane diterpenes (Figure 1) isolated from various yew
trees continue to be of extreme interest as synthetic targets1

because of the challenging, complex molecular structure coupled
with the important biological activities. Taxol (3) and its
synthetic analogs are well-known to exhibit promising antitumor
activities2 and several other natural taxanes such as taxinine
(2) were recently revealed to be inhibitors against the P-
glycoprotein.3 Remarkable contribution of both of these proper-
ties to development of new fields of cancer chemotherapy is
expected. We now report a concise total synthesis of (()-
taxusin (1).4

In the synthetic plan, we envisioned two key transforma-
tions: (1) construction of the tricyclic taxane skeleton via
cyclization of the eight-membered B ring between C9 and C10
and (2) subsequent installation of the C19 methyl group onto
the ring system.5 We have already established a powerful
method for the eight-membered B ring cyclization by means of
intramolecular vinylogous aldol reaction, using aromatic C ring
derivatives as substrates.6 It was essential for success of this
total synthesis that the methodology could be extended to non-
aromatic, allyl ester-type C ring derivatives such as12. The C
ring allyl ester moiety was incorporated to serve as a flag for
installation of the C19 methyl group.
Our first task was preparation of cyclization precursor12

(Scheme 1). We chose vinyl bromide47 as the starting material,
which corresponds to the C ring of taxusin. Successive

treatment of4with t-BuLi and CuCN produced the correspond-
ing cyanocuprate, and its reaction with 3,4-epoxy-1-hexene8

gave rise to the SN2′ coupling product5. Pyridinium dichromate
(PDC) oxidation9 of the resulting allyl alcohol5 afforded enone
6 in 66% yield (2 steps). Conjugate addition of the lithium
enolate of ethyl isobutyrate to6 proceeded with fairly high 1,4-
asymmetric induction (4:1) to yield7 as the major isomer.10
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Figure 1. Structure of natural taxanes.

Scheme 1a

a (a) (1) Et2O,-78 °C, 1.5 h; (2)-45 °C, 1 h; (3)-23 °C, 2 h. (b)
4A-MS, CH2Cl2, rt, 1.5 h, 66% from4. (c) THF,-78 to 5 °C, 7 h,
quantitative. (d) (1) THF, 0°C, 1 h; (2) 0°C, 4 h, 60%. (e) THF,-78
°C, 2.5 h, 86%. (f) (1) CH2Cl2, -45 °C, 1 h, 79%; (2) THF, rt,
overnight, 83%. (g) THF, rt, 1 week, 67%. (h) (1) THF, 0°C, 1 h; (2)
-78 °C, 1 h, quantitative.
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The Dieckmann-type cyclization of7 upon treatment with
t-BuOK and in situ silylation with triisopropylsilyl chloride
(TIPSCl) affordedâ-siloxyenone8 in 60% yield (2 steps). Then,
1,2-addition of (benzyloxy)methyllithium11 to 8, followed by
successive treatment with Montmorillonite K 10 (K10) and
BnOH in the presence of molecular sieves 4 Å (4A-MS) and
then with TBAF, furnished10 in 56% yield (3 steps). Because
the opposite relative 1,4-stereochemistry was supposed to be
advantageous at the later stages (cyclopropanation,Vide infra),
the stereochemistry of C4 was inverted at this stage by the
Mitsunobu reaction (DEAD, Ph3P, PivOH) to give 11.12
Enolization of11under thermodynamic control and subsequent
silylation with TIPSCl afforded12, the cyclization precursor
with allyl ester-type C ring in 67% yield (2 steps).
With the cyclization precursor in hand, the crucial eight-

membered B ring cyclization was examined (Scheme 2). Initial
attempts using Lewis acids such as TiCl4, SnCl4, BF3‚OEt2, and
TMSOTf were fruitless. Thus, aldehyde14and spirocyclization
product 15 were obtained in considerable amounts. After
investigating various Lewis acids and reaction conditions, Me2-
AlOTf was found to induce the desired eight-membered ring
cyclization to give13 in 62% yield. The stereochemistry of
13, namely conformation of the B ring and configuration of C9
and C10, was determined by1H NMR.
Then, reduction of the C13 keto group of13 (Li( t-BuO)3-

AlH), followed by silylation of the resultant hydroxyl group
(TESOTf) and reductive removal of pivalate group (DIBAL),
gave allyl alcohol16 in 87% yield (3 steps, Scheme 3).
Exclusive formation of the C13R alcohol could be attributed to
the concave nature of theR face.1c,6a,6c The stage was set for
investigation of the C19 methyl group installation according to
the Dauben protocol,13 utilizing the C ring allyl alcohol moiety.
Introduction of the C19 carbon as a methylene group by the
hydroxyl-group-directed cyclopropanation (Et2Zn, CH2I2)14

proceeded to give17 quantitatively. Subsequent PDC oxida-
tion,9 then, afforded cyclopropyl ketone18 in 85% yield (2
steps). The Birch reduction13 of 18 induced cleavage of
cyclopropane ring with the correct stereochemistry at C3 and
concomitant removal of two benzyl groups and TES group in
one operation to afford exclusively the desired product19 (91%).
Formation of the desired C3R protonation product should be a
result of equilibration catalyzed by MeOLi presumably during
evaporation of ammonia. We believe that the C13 hydroxyl
group liberatedin situ would play an important role to direct
the protonation from the highly congested concave face.
After the C19 methyl group was successfully installed,

sequential operations for completion of the total synthesis of

taxusin paralleled that previously reported by Holton.1a Treat-
ment of19 with excess LDA and TMSCl resulted in regiose-
lective enol silyl ether formation at C5, accompanied with
silylation of hydroxyl groups. Oxidation of the resulting
tetrasilyl ether20 with m-CPBA, followed by acidic workup
produced tetrol21, of which acetylation gave rise to tetraacetate
22 (80%, 3 steps from19). Finally, methylenation of C4
carbonyl (Ph3PdCH2, toluene, hexane, room temperature (rt))
furnished (()-taxusin15 identical to natural taxusin in respects
of 1H NMR, 13C NMR and IR spectra and TLC mobility.
In conclusion, we have achieved a concise total synthesis of

(()-taxusin (2% overall yield through 25 steps from readily
available 3-isobutoxy-2-cyclohexen-1-one). The synthetic route
is highlighted by (1) remarkably effective eight-membered B
ring cyclization leading to the C ring allyl ester-type tricyclic
taxane skeleton with the desired B ring conformation and C9,
C10 stereochemistry and (2) subsequent installation of the C19
methyl group via the Birch reduction of the cyclopropyl ketone.
Because of failure to introduce C19 methyl group via conjugate
addition,16 this approach is one of the most reasonable solutions
for such purpose.
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Scheme 2 Scheme 3a

a (a) (1) THF, rt, overnight; (2) CH2Cl2, -23 °C, 1 h; (3) CH2Cl2,
-78 °C, 1 h, 87% from13. (b) Et2O, rt, 6 h, quantitative. (c) 4A-MS,
CH2Cl2, rt, 1.5 h, 85%. (d) (1) NH3(l), THF, -78 °C, 1 h; (2) rt, 1 h,
91%. (e) THF,-78 °C, 10 min, then 0°C, 30 min. (f) CH2Cl2, 0 °C,
10 min. (g) CH2Cl2, rt, 1.5 h, 80% from19. (h) Ph3PdCH2, benzene,
hexane, 0°C, 1.5 h, 53% based on 32% conversion.
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